Achieving Yield Potential in the HRZ of south-eastern Australia

Penny Riffkin
DPI Victoria
Summary

• HRZ is a new cropping environment
• Provides challenges and opportunities
• Tools are available to help understand these challenges and explore opportunities
• Area to cropping in the HRZ is expanding
• High yield potential
• Potential not being realised
• ‘Imported’ varieties, management practices & systems
• Better understand G x E x M
What do we know?

• Not starting from scratch
• Climate
• Soils
• Good understanding of crop growth & development
• Tools - crop simulation models
How can we use this?

1. Design crops
 • identify important characteristics
 • develop benchmarks for management

2. Better understand impacts of management

3. Explore options
Designing Crops for the HRZ

Growing Season

PHASE

Vegetative

SE Phase

Grainfill

Winter

Spring

Late Spring

Flowering

Ear Development
2. Impacts of Management

OBJECTIVE

To better understand how crops grow in the HRZ environment and how management can influence grain yield and returns for growers.

Long-term climate data and crop modelling
On-farm case studies

- Typical paddock
- Model checking

Develop strategies

Run strategies using crop models

Input from growers
Model Performance in the HRZ

Wheat - Grain Yield

R² = 0.71

RMSE = 731 kg/ha

Model error was similar to other cropping regions

Wheat RMSE 731 kg grain /ha
Time of Sowing

- <80% of Maximum Potential Yield
- 80-89% of Maximum Potential Yield
- 90-100% of Maximum Potential Yield
Time of Sowing

- Up to 45% yield reduction from different optimums between short and long season cultivars
Time of Sowing

Meredith

Heat (> 30°C)
Frost (< 0°C)

Flowering Date

Mackellar
Silverstar
Chara

% Chance of frost and heat

Sowing Date

Future farming systems research
3. Explore Options

- More options in the HRZ
- Opportunity cropping
- Winter canola types
- Early sowing without frost risk
- Grazing (autumn & Spring)
Conclusion

Achieving yield potential in the HRZ will require

• Better understanding & use of resources
• Understanding constraints & opportunities
 —Better adapted varieties, management practices & systems
• Information and tools are available
Acknowledgements

Funding – GRDC, DPI, TIAR, SARDI, CSIRO

Project Team – P. Riffkin, G. O’Leary, A. Clough, Irma Grimmer, Jamie Smith (DPI), T. Acuna, G. Dean (TIAR), T. Potter (SARDI) Grower groups SFS & MFMG
Sowing times for wheat

Meredith, Victoria

Optimum sowing time is important because to maximise grain yield the crop needs to:

- make the most of the growing season,
- flower when frost risk is lower,
- flower when the risk of heat and drought stress is lower.

Crop Growth

The longer the growing season the more time the crop has to capture available resources such as sunlight and water and convert these into dry matter and ultimately grain. Crop growth allows the crop to build the physical infrastructure that captures resources and holds the plant up-right. It also sets the potential number of grains that fill from dry matter produced after flowering.

Crop Development

Growth stages need to be timed to ensure the dry matter produced is partitioned efficiently into leaf, stem, ear, roots and grain and that flowering occurs during the period of least climate risk. Ensuring the optimum flowering time to avoid heat and drought stress, and late enough to avoid frost. Although it is impossible to determine how the season will progress, long term climate data does allow us to predict the likelihood of these events occurring at a particular time in the season for a particular location.

Options for Meredith

Sowing dates for short (e.g. Silvuster), mid (e.g. Chance) and long season (e.g. Medallia) varieties at different times at Meredith in Victoria are shown in Figure 1. Varieties were sown on the 1st and 15th of each month to determine grain yield and flowering time using a crop model and 120 years of climate data. Crop yields and flowering times differed, both within and between sowing times over the years due to variations in rainfall, evaporation, temperature and radiation. The optimum sowing time is a balance between minimising climatic risk (Figure 1) and maximising resource capture (Figure 2). These factors do not necessarily coincide and growers need to decide the risk they are prepared to take to achieve a targeted grain yield.

Nitrogen for wheat

Nitrogen fertiliser strategies for Meredith, Victoria

Take Home Messages

This fact sheet has been developed specifically for the climate and soils in the Meredith district.

- Nitrogen treatments that produce the highest yield increase did not necessarily give the highest economic return.
- Long season wheats required more N to achieve their yield potential than the short or mid season wheats.
- The most profitable strategies come from applying 50 or 100 kg N fertiliser/ha.
- There is little benefit of applying high levels of N fertilizer to short and mid season varieties when sowing time falls with high starting N.

Why is nitrogen important?

Nitrogen (N) is an essential nutrient for all life forms. It is a major constituent of proteins, the main building block of plants and animals. Nitrogen is essential for cell growth and the formation of chlorophyll in plants. Chlorophyll is the green pigment in plants and is responsible for photosynthesis, the conversion of sunlight into carbohydrates, proteins and grain yield.

How does nitrogen become available to the crop?

Nitrogen in the atmosphere

Nitrogen Fixation

Legumes + bacteria

in root nodules

Mineralisation

Breaking of organic matter by soil microbes convert nitrogen from the plant can take up

Nitrification

Nitrate (NO₃⁻) → ammonium (NH₄⁺)

Denitrification

Nitrate (NO₃⁻) → nitrogen gas

Nitrogen fertiliser

crop uptake

leaching

www.sfs.org.au